ADVERTISEMENT
 
 
 
EDUCATION > Educational Programs > Education for Medical Students > Medical Student Curriculum > Benign Prostatic Hyperplasia

Benign Prostatic Hyperplasia

This document was amended in July 2016 to reflect literature that was released since the original publication of this content in May 2013. This document will continue to be periodically updated to reflect the growing body of literature related to this topic.

KEYWORDS: Prostatic hypertrophy, prostatic hyperplasia, PSA, voiding dysfunction, lower urinarytract symptoms (LUTS).

Learning Objectives

At the end of medical school, the medical student will be able to

Prostate Anatomy

There are 4 basic anatomic zones of the prostate, as illustrated in Figure 1: the anterior zone , the peripheral zone , the central zone, and the transition zone. . The anterior zone is entirely fibromuscular and non-glandular, and it appears to have little significance in prostatic function or pathology. This area comprises approximately 20% of the bulk of prostatic tissue. The peripheral zone is composed entirely of acinar tissue. It comprises the posterior surface of the prostate, including the apical, lateral, posterolateral and anterolateral portions of the prostate. The peripheral zone and anterior zone, together, represent approximately 70% of glandular volume in the normal adult prostate. The vast majority of prostatic carcinomas arise in the peripheral zone of the prostate. The central gland is composed of the proximal urethra, the prostate tissue around the posterior urethra and the smooth muscle of the internal urethral sphincter. It forms the central portion of the prostate and extends from the base of the prostate to the verumontanum. The transition zone surrounds the urethra, and although this region accounts for only 10% of prostate glandular tissue in young men, it exhibits significant growth with age. Indeed, it is in the transition zone is where benign prostatic hyperplasia (BPH) develops.

Benign Prostatic Hyperplasia-Definition

Benign prostatic hyperplasia (BPH) refers to the proliferation of epithelial and smooth muscle cells within the transition zone of the prostate. Other terms for BPH include benign prostatic hypertrophy and benign prostatic enlargement (BPE). The term has been used to describe a constellation of voiding symptoms that occurs in men with aging. These symptoms are generally referred to as obstructive in nature, as the hyperplastic tissue leads to a narrowing of the prostatic urethra. Such symptoms include decreased force of stream, hesitancy, straining, incomplete bladder emptying, and nocturia. Irritative symptoms are also associated with BPH and include urinary frequency, urgency, and occasionally dysuria.

BPH has been used synonymously with “prostatism” and “bladder outlet obstruction”, implying that obstruction to urinary outflow, secondary to prostatic enlargement, is the cause of such symptoms. More recently, it has been recognized that prostatic enlargement is not necessary for such symptoms. Furthermore, women may experience similar symptoms with age. Thus, “lower urinary tract symptoms” (LUTS) is currently the preferred term to describe this complex of obstructive and irritative urinary symptoms that occur in both sexes with age.

Figure 1. The zones of the normal prostate.

 

Figure 1. The zones and glandular regions of the normal prostate.

Voiding dysfunction in the aging male may be due to a variety of factors including changes in the bladder, prostate and/or urethra. Intrinsic changes in the bladder, such as bladder instability, decreased bladder compliance and decreased bladder capacity may all lead to LUTS. However, in many men these symptoms are due to BPH. With age, the prostate exhibits glandular enlargement, increased smooth muscle tone and decreased compliance secondary to altered collagen deposition; these changes can lead to altered urinary symptoms due to outlet obstruction. Urethral stricture and bladder neck contracture are other forms of obstruction or blockage that can present with similar symptoms.

BPH is one of the most frequent diagnoses leading to urology referral. It begins to develop before age 30 with almost 10% of men having histologic evidence of BPH by 40 years of age, and 50% of men showing evidence by age 60. Overall, nearly 80% of men will develop BPH, and as many as 30% will receive treatment for it. In studies that examine the natural history of BPH, the incidence of acute urinary retention or the development of a significant post-void residual urinary volume is 2% per year. Although BPH is seldom life-threatening, it significantly impacts patient quality of life. Thus, the burden of BPH on the healthcare system is substantial.

Benign Prostatic Hyperplasia-Diagonsis

After excluding other causes of LUTS, both objective and subjective parameters are used to decide whether or not treatment is indicated. Objective parameters include determination of prostate size, measurement of urinary flow rate and determination of the post- void residual urine volume. Although several subjective instruments are available to quantify the severity of LUTS, the American Urological Association Symptom Score Index (AUASI) also known as the International Prostatic Symptom Score (IPSS) is used by most clinicians (Figure 2). This questionnaire consists of 7 items that determines the severity of irritative and obstructive voiding symptoms.

Figure 2. The validated AUA Symptom Score tool for voiding symptoms.

Figure 2. The validated AUA Symptom Score tool for voiding symptoms.

Symptom severity related to urinary frequency, nocturia, weak urinary stream, hesitancy, intermittency, incomplete bladder emptying and urinary urgency is assessed, as well as its effect on quality of life. On a scale of 0-35, mild symptoms exist with scores of 0-7, moderate symptoms with scores of 7-15 and severe symptoms with a score of >15. This index demonstrates predictive validity, reliability and internal consistency. There is some correlation between the objective and subjective measures in that the lower the peak urinary flow rate, the more severe the urinary symptoms and the larger the prostate. Using the AUA Symptom score and the information from the clinical evaluation, treatment options can be reviewed, as outlined in Figure 3.

Importantly, there are several signs or symptoms that may coexist with voiding symptoms that can alter the treatment algorithm. If the patient has urinary retention, an acute condition in which urine is unable to be voluntarily voided, then immediate treatment is indicated, and may include surgical intervention. A trial of Foley catheter or clean intermittent catherization (CIC) and alpha blocker medication may avoid surgical treatment in the future in about 80% of cases in which urinary retention coexists with LUTS. Recurrent urinary tract infections, persistent or recurrent gross hematuria, and bladder stones are also coexisting conditions that may necessitate surgical rather than medical treatment.

Figure 3. Diagnostic and treatment algorithm of BPH.

Figure 3. Diagnostic and treatment algorithm of BPH.

Benign Prostatic Hypertrophy-Treatment

Drug Therapy

Medical therapy for BPH attempts to shrink or stop the growth of the prostate or open the urethral channel within the prostate, without using surgery. The FDA has currently approved multiple drugs to relieve the symptoms associated with an enlarged prostate.

Medications in the class known as 5-alpha-reductase inhibitors (5-ARIs) result in decreased production of the hormone dihydrotestoterone (DHT), which is responsible for growth of the acinar glands of the prostate. These include Finasteride, FDA-approved in 1992, and dutasteride, FDA-approved in 2001. The 5-ARIs may either prevent progression of growth of the prostate or actually shrink the prostate in some men.

Another class of drugs used for treating BPH is the alpha-1-adrenergic receptor blockers (alpha blockers), which act by relaxing the smooth muscle of the prostate and bladder neck to improve urine flow and reduce bladder outlet obstruction.. This class includes terazosin, doxazosin, tamsulosin, and alfuzosin. . Terazosin and doxazosin were developed as blood pressure pills, but tamsulosin and alfuzosin were developed specifically to treat BPH. There is excellent clinical trial data that shows that combination therapy with a 5-ARI and an alpha blocker (finasteride and doxazosin) together is more effective than using either drug alone to relieve symptoms and prevent BPH progression. The dual-drug regimen reduced the risk of BPH progression by 67 percent, compared with 39 percent for doxazosin alone and 34 percent for finasteride alone.

Conventional Surgical Therapy

Transurethral resection of the prostate (TURP). Surgical therapy with transurethral resection of the prostate (TURP) has traditionally been the “gold standard” treatment for men with BPH. In 1986, it was estimated that TURP accounted for 24% of the professional workload for practicing urologists in the U.S. In this type of surgery, no external incision is needed. After giving anesthesia, the surgeon reaches the prostate by inserting an instrument called a resectoscope through the urethra. The resectoscope is about 12 inches long and 1/2 inch in diameter, contains a light, valves for controlling irrigating fluid, and an electrical loop that cuts tissue and seals blood vessels. During the 60-90-minute operation, the surgeon uses the scope's wire loop to remove the obstructing tissue one piece at a time. The pieces of tissue are carried by the fluid into the bladder and then flushed out at the end of the operation. A TURP is used for approximately 90% of all prostate surgeries for BPH. In most patients, before TURP is performed, consideration has already been given to medical therapy. In general, TURP is reserved for very symptomatic men or those who develop complications including urinary tract infection, bladder stones, or gross hematuria as mentioned above.

A variation of the TURP procedure is called transurethral incision of the prostate (TUIP). Instead of removing tissue, as with TURP, this procedure widens the urethra by making a few small cuts in the bladder neck, where the urethra joins the bladder, and in the prostate gland itself. Although some people believe that TUIP gives the same relief as TURP with less risk of side effects such as retrograde ejaculation, its advantages and long-term side effects have not been clearly established.

Surgical “open” prostatectomy. In the few cases when a transurethral procedure is not able to be done, because the prostate is too large, the bladder has been damaged or contains bladder stones, or important identifying landmarks not visible for TURP, open prostatic surgery in indicated. With all open surgical procedures, anesthesia is given and an incision is made. Once the surgeon reaches the prostate capsule, he or she scoops out the enlarged tissue from inside the gland. Importantly, as with other types of surgery and procedures for BPH, the part of the prostate at risk for prostate cancer development is not removed and therefore men who have procedures for BPH are still at risk for developing prostate cancer.

Transurethral laser surgery. Surgical procedures that employ side-firing laser fibers and Nd: YAG lasers to vaporize obstructing prostate tissue are also used to treat BPH. A laser fiber is passed into the urethra near the prostate using a cystoscope and then several bursts of energy lasting 30 to 60 seconds are delivered through the laser fiber. The laser energy destroys prostate tissue and causes shrinkage. As with TURP, laser surgery requires anesthesia and a hospital stay. One advantage of laser surgery over TURP is that laser surgery causes less blood loss and allows for a quicker recovery. But laser surgery may not be effective on larger prostates and the long-term effectiveness of laser surgery is unclear. There are two variations of laser surgery for BPH: Photoselective Vaporization of the Prostate (PVP) uses a high-energy laser to destroy prostate tissue and seal the treated area, and Interstitial Laser Coagulation involves placing the tip of the fiberoptic probe directly into the prostate tissue to destroy it.

Although these approaches are often successful, some adverse effects may occur. The cutting of prostatic tissue may result in significant bleeding and the absorption of irrigation fluid into veins that are cut open may result in a life-threatening syndrome of fluid overload and dilutional hyponatremia known as “TUR syndrome”. In addition, electrical energy may damage important surrounding structures. Damage to the internal urethral sphincter may cause retrograde ejaculation and possible incontinence, whereas damage to the nerves responsible for erection (which run along the outer rim of the prostate) may result in impotence.

Minimally Invasive Therapy

Transurethral microwave procedures. This device uses microwaves to heat and destroy excess prostate tissue. In the procedure called transurethral microwave thermotherapy (TUMT), the device sends microwaves through a catheter to heat selected portions of the prostate to at least 111 degrees Fahrenheit. A cooling system protects the urinary tract during the procedure.The procedure is performed on an outpatient basis in an hour without general anesthesia. TUMT has not been reported to lead to erectile dysfunction or incontinence. Although microwave therapy does not cure BPH, it reduces urinary frequency, urgency, straining, and intermittent flow. It does not correct the problem of incomplete emptying of the bladder. Thee long-term effects of microwave therapy are still not clear however.

Transurethral needle ablation (TUNA). The TUNA system delivers low-level radiofrequency energy through twin needles to burn away selected regions of the enlarged prostate. Shields protect the urethra from heat damage. The TUNA system improves urine flow and relieves symptoms with fewer side effects when compared with conventional surgery, transurethral resection of the prostate (TURP). No incontinence or impotence has been observed with this procedure.

Water-induced thermotherapy. This therapy uses heated water to destroy excess tissue in the prostate. A catheter containing multiple shafts is positioned in the urethra so that a treatment balloon rests in the middle of the prostate. A computer controls the temperature of the water, which flows into the balloon and heats the surrounding prostate tissue. The system focuses the heat in precise regions of the prostate, while surrounding tissues in the urethra and bladder are protected. Destroyed tissue either escapes with urine through the urethra or is reabsorbed by the body.

High-intensity focused ultrasound (HIFU). The use of low frequency ultrasound waves to destroy prostate tissue is the youngest of the minimally invasive therapies developed for BPH. It appears as safe as other minimally invasive methods but long term outcome data is not available as yet.

Benign Prostatic Hyperplasia and PSA

Prostate Specific Antigen (PSA) is a serine protease produced by benign and malignant prostate tissue. Functionally, PSA is the enzyme responsible for liquefaction of the seminal fluid after ejaculation. Although produced in small amounts in other tissues, it should be considered to be prostate specific. PSA circulates in the serum in both free (unbound) and complexed (bound) forms. In addition to being elevated by BPH and prostate cancer, PSA may also be transiently elevated in cases of prostatic inflammation (prostatitis) or infarction, and after prostatic manipulation by biopsy. However, routine digital rectal examination (DRE) usually has little effect on serum PSA levels. The half-life of serum PSA is 2.2 to 3.2 days. Therefore, one should wait 4 to 8 weeks after prostate manipulation and inflammation (cystoscopy, prostate biopsy, and prostatitis) before obtaining a PSA.

A flawless and standardized interpretation of elevated PSA values has yet to be determined. Although it has been well demonstrated that patients with elevated serum PSA levels are more likely to be harboring aggressive diseaseserum PSA screening interpreted outside the context of important patient-specific variables carries with it a significant risk of what has been called overdiagnosis: the identification and treatment of patients who might otherwise have lived out the rest of their lives without experiencing any of the terrible symptoms associated with advanced prostate cancer. Since the treatment of prostate cancer is associated with a significant level of patient morbidity (including bowel dysfunction, urinary dysfunction, and impotence), the use of serum PSA as a screening tool has been a topic of significant controversy. In May of 2012, the United States Preventative Services Task Force (USPSTF), released their recommendation against routine PSA screening, stating they have found "fair evidence that [PSA screening] is ineffective or that harms outweigh the benefits." Nevertheless, the AUA recognizes that the interpretation of an asymptomatic patient’s PSA level is a nuanced exercise that must be tailored to the patient in question.

Potential screening should be preceded by an informed discussion of the risks and benefits of screening, early diagnosis and treatment. Given the added cost and anxiety associated with PSA screening, in combination with a lack of randomized trials showing that screening decreases morbidity and mortality, such screening is not recommended for everyone. With such information, the patient can make an individual decision regarding PSA screening.

Summary

  1. The prostate is composed of several regions and zones: two zones of interest are the peripheral zone, where most cancers arise, and the transition zone, where BPH arises.
  2. The diagnosis of voiding dysfunction due to BPH is made based on both subjective and objective findings on clinical evaluation.
  3. Medical treatment of BPH involves treatment that relaxes the muscular stromal tissue of the bladder neck and prostatic urethra (alpha-blockers) and reduction in the acinar-glandular volume of the prostate through reduced DHT production (5-alpha-reductase inhibitors).
  4. Indications for surgical intervention with BPH includes urinary retention, gross hematuria, bladder stones, and urinary tract infection.
  5. Serum PSA, a serine protease that liquefies the ejaculate, increases over time with both BPH and prostate cancer, which makes it a difficult diagnostic marker for cancer alone.

References

AUA Guideline on the Management of Benign Prostatic Hyperplasia: Diagnosis and Treatment Recommendations.

Harkaway RC, Issa MM. Medical and minimally invasive therapies for the treatment of benign prostatic hyperplasia. Prostate Cancer Prostatic Dis. 2006;9(3):204-14. Epub 2006 Jun 6

Authors

Gilad Amiel, MD
Houston, TX
Disclosures: Nothing to disclose

Michael Hollis, MD
Brighton, MA
Disclosures: Nothing to disclose

Ranjith Ramasamy, MD
Miami, FL
Disclosures: Nothing to disclose

ADVERTISEMENT

ADVERTISEMENT
Donate
Contact
Press/Media
Sections
Term of Use

© 2016 American Urological Association Education and Research Inc. All Rights Reserved.