SUMMARY

Purpose

The clinical guideline on urethral stricture provides a clinical framework for the diagnosis of urethral stricture and includes discussion of initial management, urethroplasty, reconstruction, contracture, stenosis, special circumstances, and post-operative follow-up care.

Methodology

A systematic review of the literature using the Pubmed, Embase, and Cochrane databases (search dates 1/1/1990 to 12/1/2015) was conducted to identify peer-reviewed publications relevant to the diagnosis and treatment of urethral stricture in men. The review yielded an evidence base of 250 articles after application of inclusion/exclusion criteria. The search for the 2023 Amendment used the Ovid, MEDLINE, Embase, and ClinicalTrials.gov databases and was modified to include females and males (search dates 12/2015 – 10/2022 for males; 01/1990 – 10/2022 for females) and one new Key Question on sexual dysfunction outcomes in men with bulbar urethral strictures was added (search dates: 01/1990 – 10/2022). All searches yielded 11,752 citations; after inclusion and exclusion criteria were applied, 81 studies were added to the existing evidence base. These publications were used to create the guideline statements. If sufficient evidence existed, then the body of evidence for a particular treatment was assigned a rating of A (high quality evidence; high certainty), B (moderate quality evidence; moderate certainty), or C (low quality evidence; low certainty) and evidence-based statements of Strong, Moderate, or Conditional Recommendation based on risks and benefits were developed. Additional information is provided as Clinical Principles and Expert Opinions when insufficient evidence existed.

GUIDELINE STATEMENTS

DIAGNOSIS/INITIAL MANAGEMENT

1. Clinicians should include urethral stricture in the differential diagnosis of patients who present with decreased urinary stream, incomplete emptying, dysuria, urinary tract infection, and after rising post-void residual. (Moderate Recommendation; Evidence Level: Grade C)
2. After performing a history, physical examination, and urinalysis, clinicians may use a combination of patient reported measures, uroflowmetry, and ultrasound post-void residual assessment in the initial evaluation of suspected urethral stricture. (Clinical Principle)

3. Clinicians should use urethro-cystoscopy, retrograde urethrogram, voiding cystourethrogram, or ultrasound urethrography to make a diagnosis of urethral stricture. (Moderate Recommendation; Evidence Level: Grade C)

4. Clinicians planning non-urgent intervention for a known stricture should determine the length and location of the urethral stricture. (Expert Opinion)

5. Surgeons may utilize urethral endoscopic management (e.g., urethral dilation, direct visual internal urethrotomy) or immediate suprapubic cystostomy for urgent management of urethral stricture, such as discovery of symptomatic urinary retention or need for catheterization prior to another surgical procedure. (Expert Opinion)

6. Surgeons may place a suprapubic cystostomy to promote “urethral rest” prior to definitive urethroplasty in patients dependent on an indwelling urethral catheter or intermittent self-dilation. (Conditional Recommendation; Evidence Level: Grade C)

DILATION/INTERNAL URETHROTOMY/URETHROPLASTY

7. Surgeons may offer urethral dilation, direct visual internal urethrotomy, or urethroplasty for the initial treatment of a short (<2cm) bulbar urethral stricture. (Conditional Recommendation; Evidence Level: Grade C)

8. Surgeons may perform either dilation or direct visual internal urethrotomy when performing endoscopic treatment of a urethral stricture. (Conditional Recommendation; Evidence Level: Grade C)

9. Surgeons may safely remove the urethral catheter within 72 hours following uncomplicated dilation or direct visual internal urethrotomy. (Conditional Recommendation; Evidence Level: Grade C)

10. In patients who are not candidates for urethroplasty, clinicians may recommend self-catheterization after direct visual internal urethrotomy to maintain urethral patency. (Conditional Recommendation; Evidence Level: Grade C)

11. a. Surgeons should offer urethroplasty, instead of repeated endoscopic management for recurrent anterior urethral strictures following failed dilation or direct visual internal urethrotomy. (Moderate Recommendation; Evidence Level: Grade C)

11 b. Surgeons may offer urethral dilation or direct visual internal urethrotomy, combined with drug-coated balloons, for recurrent bulbar urethral strictures <3cm in length. (Conditional Recommendation; Evidence Level: Grade B)

12. Surgeons who do not perform urethroplasty should refer patients to surgeons with expertise. (Expert Opinion)

ANTERIOR URETHRAL RECONSTRUCTION

13. Surgeons may initially treat meatal or fossa navicularis strictures with either dilation or meatotomy. (Clinical Principle)

14. Surgeons should offer urethroplasty to patients with recurrent meatal or fossa navicularis strictures. (Moderate Recommendation; Evidence Level: Grade C)

15. Surgeons should offer urethroplasty to patients with penile urethral strictures given the expected high recurrence rates with endoscopic treatments. (Moderate Recommendation; Evidence Level: Grade C)

16. Surgeons should offer urethroplasty as the initial treatment for patients with long (≥2cm) bulbar urethral strictures given the low success rate of direct visual internal urethrotomy or dilation. (Moderate Recommendation; Evidence Level: Grade C)
17. Surgeons may reconstruct long multi-segment strictures with one-stage or multi-stage techniques using oral mucosal grafts, penile fasciocutaneous flaps, or a combination of these techniques. (Moderate Recommendation; Evidence Level: Grade C)

18. a. Surgeons may offer perineal urethrostomy as a long-term treatment option to patients as an alternative to urethroplasty. (Conditional Recommendation; Evidence Level: Grade C)

18. b. Surgeons should offer perineal urethrostomy as a long-term treatment option to patients as an alternative to urethroplasty in patient populations at high risk for failure of urethral reconstruction. (Expert Opinion)

19. a. Surgeons should use oral mucosa as the first choice when using grafts for urethroplasty. (Expert Opinion)

19. b. Surgeons may use either buccal or lingual mucosal grafts as equivalent alternatives. (Strong Recommendation; Evidence Level: Grade A)

20. Surgeons should not perform substitution urethroplasty with allograft, xenograft, or synthetic materials except under experimental protocols. (Expert Opinion)

21. Surgeons should not perform a single stage tubularized graft urethroplasty. (Expert Opinion)

22. Surgeons should not use hair-bearing skin for substitution urethroplasty. (Clinical Principle)

PELVIC FRACTURE URETHRAL INJURY

23. Clinicians should use retrograde urethrography with voiding cystourethrogram and/or retrograde + antegrade cystoscopy for preoperative planning of delayed urethroplasty after pelvic fracture urethral injury. (Moderate Recommendation; Evidence Level: Grade C)

24. Surgeons should perform delayed urethroplasty instead of delayed endoscopic procedures after urethral obstruction/obliteration due to pelvic fracture urethral injury. (Expert Opinion)

25. Definitive urethral reconstruction for pelvic fracture urethral injury should be planned only after major injuries stabilize and patients can be safely positioned for urethroplasty. (Expert Opinion)

FEMALE URETHRAL RECONSTRUCTION

26. Surgeons may reconstruct female urethral strictures using oral mucosal grafts, vaginal flaps, or a combination of these techniques. (Moderate Recommendation; Evidence Level: Grade C)

BLADDER NECK CONTRACTURE/VESICOURETHRAL STENOSIS

27. Surgeons may perform a dilation, bladder neck incision, or transurethral resection for bladder neck contracture after endoscopic prostate procedure. (Expert Opinion)

28. Surgeons may perform a dilation, vesicourethral incision, or transurethral resection for post-prostatectomy vesicourethral anastomotic stenosis. (Conditional Recommendation; Evidence Level: Grade C)

29. Surgeons may perform robotic or open reconstruction for recalcitrant stenosis of the bladder neck or post-prostatectomy vesicourethral anastomotic stenosis. (Conditional Recommendation; Evidence Level: Grade C)

SPECIAL CIRCUMSTANCES

30. In men who require chronic self-catheterization (e.g., neurogenic bladder), surgeons may offer urethroplasty as a treatment option for urethral stricture causing difficulty with intermittent self-catheterization. (Expert Opinion)
LICHEN SCLEROSUS

31. Clinicians may perform biopsy for suspected lichen sclerosus and must perform biopsy if urethral cancer is suspected. (*Clinical Principle*)

32. In lichen sclerosus-proven urethral stricture, surgeons should not use genital skin for reconstruction. (*Strong Recommendation; Evidence Level: Grade B*)

POST-OPERATIVE FOLLOW-UP

33. Clinicians should monitor urethral stricture patients to identify symptomatic recurrence following dilation, direct visual internal urethrotomy, or urethroplasty. (*Expert Opinion*)
INTRODUCTION

PURPOSE

Urethral stricture is chronic fibrosis and narrowing of the urethral lumen caused by acute injury, inflammatory conditions, and iatrogenic interventions including urethral instrumentation, surgery, and prostate cancer treatment. The symptoms of urethral stricture are non-specific and may overlap with other common conditions that confound timely diagnosis, including lower urinary tract symptoms (LUTS) and urinary tract infections (UTI). Urologists play a key role in the initial evaluation of urethral stricture and currently provide all accepted treatments. Thus, urologists must be familiar with the evaluation and diagnostic tests for urethral stricture as well as endoscopic and open surgical treatments. This guideline provides evidence-based guidance to clinicians and patients regarding how to recognize symptoms and signs of a urethral stricture/stenosis, carry out appropriate testing to determine the location and severity of the stricture, and recommend the best options for treatment. As the science relevant to urethral stricture evolves and improves, the strategies presented here will be amended to remain consistent with the highest standards of clinical care.

METHODOLOGY

2016 Guideline

A systematic review for the 2016 guideline was conducted to identify published articles relevant to the diagnosis and treatment of urethral stricture in men. Literature searches were performed on English-language publications using the Pubmed, Embase, and Cochrane databases from 1/1/1990 to 12/1/2015 by the ECRI Institute and were included in a systematic review evidence report. Preclinical studies (e.g., animal models), commentary, editorials, non-English language publications, and meeting abstracts were excluded. Additional exclusion criteria were as follows: studies of females; studies of stricture prevention; patients with epispadias, congenital strictures, and duplicated urethra; trauma already covered under trauma guidelines including diagnosis and management of acute pelvic fracture urethral injury (PFUI) or pelvic fracture urethral disruption; urethral cancer not related to stricture; or voiding symptoms not related to stricture. Studies with less than 10 patients were generally excluded from further evaluation and thus data extraction given the unreliability of the statistical estimates and conclusions that could be derived from them. In rare instances, we have included studies with less than 10 patients or studies preceding the literature search date if no other evidence was identified. For certain key questions that had little or no evidence from comparative studies, we included case series with 50 or more patients. Review article references were checked to ensure inclusion of all possible relevant studies. Multiple reports on the same patient group were carefully examined to ensure inclusion of only non-redundant information. The systematic review yielded a total of 250 publications relevant to preparation of the guideline.

QUALITY OF INDIVIDUAL STUDIES AND DETERMINATION OF EVIDENCE STRENGTH

The quality of individual studies that were either randomized controlled trials (RCTs) or clinical controlled trials was assessed using the Cochrane Risk of Bias tool. Observational cohort studies with a comparison of interest were evaluated with the Drug Effectiveness Review Project instrument. Conventional diagnostic cohort studies, diagnostic case-control studies, or diagnostic case series that presented data on diagnostic test characteristics were evaluated using the QUADAS 2 tool, which evaluates the quality of diagnostic accuracy studies. The categorization of evidence strength is conceptually distinct from the quality of individual studies. Evidence strength refers to the body of evidence available for a particular question and includes not only individual study quality but also consideration of study design, consistency of findings across studies, adequacy of sample sizes, and generalizability of samples, settings, and treatments for the purposes of the guideline. The American Urological Association (AUA) categorizes the level of a body of evidence as Grade A (well-conducted and highly-generalizable RCTs or exceptionally strong observational studies with consistent findings); Grade B (RCTs with some weaknesses of procedure or generalizability or moderately strong observational studies with consistent findings); or Grade C (RCTs with serious deficiencies of procedure, generalizability, or extremely small sample sizes).
sizes or observational studies that are inconsistent, have small sample sizes, or have other problems that potentially confound interpretation of data). By definition, Grade A evidence is evidence about which the Panel has a high level of certainty, Grade B evidence is evidence about which the Panel has a moderate level of certainty, and Grade C evidence is evidence about which the Panel has a low level of certainty.4

2023 Amendment

The 2016 guideline search strategy was modified to include females in addition to males and was used to systematically search Ovid, MEDLINE, Embase, and ClinicalTrials.gov databases for new evidence published between December 2015 and October 2022. A second search was designed to only identify female urethral stricture studies published between January 1990 and December 2015, the timeframe covered in the original guideline for male patients. Finally, a third search (January 1990 – October 2022) was developed to address a new Key Question comparing sexual dysfunction outcomes in men with bulbar urethral strictures receiving either non-transecting anastomotic urethroplasty procedures or transecting procedures. Titles and abstracts of studies identified by all searches were reviewed in a two-stage process. During the first stage, studies were reviewed to determine if they assessed urethral stricture in males or females, and if they met the study selection criteria of prespecified study type, minimum allowable sample size, and if published in English. Allowable study types included systematic reviews, RCTs, diagnostic accuracy studies, cohort studies with and without comparison group, case-control studies, and case series. All other study types were excluded. Only studies that enrolled at least 10 patients were considered for inclusion in the evidence base. During the second stage of title and abstract review, abstracts were compared to the PICO criteria. Additionally, studies were assessed to determine if they either directly informed the Key Questions or if they presented data that could reaffirm or refute the original guideline statements.

In the original ECRI evidence report that underpinned the male urethral stricture guideline,5 single-arm observational studies that evaluated urethroplasty or bulbar urethral strictures were excluded, and the evidence base was comprised of RCTs and comparative cohort studies. This exclusion criterion was retained in the amendment when evaluating studies that enrolled male or both male and female populations. However, based on a paucity of data, single-arm studies that enrolled a solely female population were retained. Following study selection, 81 studies were included in the amendment evidence base.

INDIVIDUAL STUDY QUALITY AND POTENTIAL FOR BIAS

Quality assessment for all retained studies was conducted. Using this method, studies deemed to be of low quality would not be excluded from the systematic review, but would be retained, and their methodological strengths and weaknesses discussed where relevant. To define an overall study quality rating for each included study, risk of bias as determined by validated study-type specific tools was paired with additional important quality features. AMSTAR-2 was used for assessment of systematic review with and without meta-analyses.6 To evaluate the risk of bias within the identified RCTs, the Cochrane Risk of Bias Tool7 was employed, while for observational studies, a Risk of Bias in Non-Randomized Studies – of Intervention (ROBINS-I) tool8 was used. Additional important quality features, such as study design, comparison type, power of statistical analysis, and sources of funding were extracted for each study.

CERTAINTY OF EVIDENCE BY GRADE

The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system was used to determine the aggregate evidence quality for each recommendation statement.9 GRADE defines a body of evidence in relation to how confident guideline developers can be that the estimate of effects as reported by that body of evidence is correct. Evidence is categorized as high, moderate, low, and very low, and assessment is based on the aggregate risk of bias for the evidence base, plus limitations introduced as a consequence of inconsistency, indirectness, imprecision and publication bias across the studies.10 Upgrading of evidence is possible if the body of evidence indicates a large effect or if confounding would suggest either spurious effects or would reduce the demonstrated effect.
Table 1: Level of Evidence Definitions

<table>
<thead>
<tr>
<th>AUA Level of Evidence Category</th>
<th>GRADE Certainty Rating</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>High</td>
<td>• Very confident that the true effect lies close to that of the estimate of the effect</td>
</tr>
<tr>
<td>B</td>
<td>Moderate</td>
<td>• Moderately confident in the effect estimate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different</td>
</tr>
<tr>
<td>C</td>
<td>Low</td>
<td>• Confidence in the effect estimate is limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The true effect may be substantially different from the estimate of the effect</td>
</tr>
<tr>
<td></td>
<td>Very Low</td>
<td>• Very little confidence in the effect estimate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The true effect is likely to be substantially different from the estimate of the effect</td>
</tr>
</tbody>
</table>

The AUA employs a 3-tiered strength of evidence system to underpin evidence-based guideline statements. Table 1 summarizes the GRADE categories, definitions, and how these categories translate to the AUA strength of evidence categories. In short, high certainty by GRADE translates to AUA A-category strength of evidence, moderate to B, and both low and very low to C.

AUA NOMENCLATURE: LINKING STATEMENT TYPE TO EVIDENCE LEVEL

The AUA nomenclature system explicitly links statement type to body of evidence level, degree of certainty, magnitude of benefit or risk/burden, and the Panel’s judgment regarding the balance between benefits and risks/burden (Table 2). Strong Recommendations are directive statements that an action should (benefits outweigh risks/burden) or should not (risks/burden outweigh benefits) be undertaken because net benefit or net harm is substantial. Moderate Recommendations are directive statements that an action should (benefits outweigh risks/burden) or should not (risks/burden outweigh benefits) be undertaken because net benefit or net harm is moderate. Conditional Recommendations are non-directive statements used when the evidence indicates that there is no apparent net benefit or harm or when the balance between benefits and risks/burden is unclear. All three statement types may be supported by any body of evidence grade. Grade A evidence in support of a Strong or Moderate Recommendation indicates that the statement can be applied to most patients in most circumstances and that future research is unlikely to change confidence. Grade B evidence in support of a Strong or Moderate Recommendation indicates that the statement can be applied to most patients in most circumstances, but that better evidence could change confidence. Grade C evidence in support of a Strong or Moderate Recommendation indicates that the statement can be applied to most patients in most circumstances, but that better evidence is likely to change confidence. Grade C evidence is only rarely used in support of a Strong Recommendation. Conditional Recommendations also can be supported by Grade A, B, or C evidence. When Grade A is used, the statement indicates that benefits and risks/burden appear balanced, the best action depends on patient circumstances, and future research is unlikely to change confidence. When Grade B evidence is used, benefits and risks/burden appear balanced, the best action also depends on individual patient circumstances and better evidence could change confidence. When Grade C evidence is used, there is uncertainty regarding the balance between benefits and risks/burden, alternative strategies may be equally reasonable, and better evidence is likely to change confidence.
Table 2: AUA Nomenclature Linking Statement Type to Degree of Certainty, Magnitude of Benefit or Risk/Burden, and Body of Evidence Level

<table>
<thead>
<tr>
<th>Evidence Grade</th>
<th>Evidence Level: Grade A (High Certainty)</th>
<th>Evidence Level: Grade B (Moderate Certainty)</th>
<th>Evidence Level: Grade C (Low Certainty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong Recommendation</td>
<td>- Benefits > Risks/Burdens (or vice versa)</td>
<td>- Benefits > Risks/Burdens (or vice versa)</td>
<td>- Benefits > Risks/Burdens (or vice versa)</td>
</tr>
<tr>
<td>(Net benefit or harm substantial)</td>
<td>- Net benefit (or net harm) is substantial</td>
<td>- Net benefit (or net harm) is substantial</td>
<td>- Net benefit (or net harm) appears substantial</td>
</tr>
<tr>
<td></td>
<td>- Applies to most patients in most circumstances and future research is unlikely to change confidence</td>
<td>- Applies to most patients in most circumstances but better evidence could change confidence</td>
<td>- Applies to most patients in most circumstances but better evidence is likely to change confidence (rarely used to support a Strong Recommendation)</td>
</tr>
<tr>
<td>Moderate Recommendation</td>
<td>- Benefits > Risks/Burdens (or vice versa)</td>
<td>- Benefits > Risks/Burdens (or vice versa)</td>
<td>- Benefits > Risks/Burdens (or vice versa)</td>
</tr>
<tr>
<td>(Net benefit or harm moderate)</td>
<td>- Net benefit (or net harm) is moderate</td>
<td>- Net benefit (or net harm) appears moderate</td>
<td>- Net benefit (or net harm) appears moderate</td>
</tr>
<tr>
<td></td>
<td>- Applies to most patients in most circumstances and future research is unlikely to change confidence</td>
<td>- Applies to most patients in most circumstances but better evidence could change confidence</td>
<td>- Applies to most patients in most circumstances but better evidence is likely to change confidence (rarely used to support a Strong Recommendation)</td>
</tr>
<tr>
<td>(Net benefit or harm comparable to other options)</td>
<td>- Best action depends on individual patient circumstances</td>
<td>- Best action appears to depend on individual patient circumstances</td>
<td>- Net benefit (or net harm) comparable to other options</td>
</tr>
<tr>
<td></td>
<td>- Future Research is unlikely to change confidence</td>
<td>- Better evidence could change confidence</td>
<td>- Alternative strategies may be equally reasonable</td>
</tr>
<tr>
<td>Clinical Principle</td>
<td>a statement about a component of clinical care that is widely agreed upon by urologists or other clinicians for which there may or may not be evidence in the medical literature</td>
<td></td>
<td>- Better evidence likely to change confidence</td>
</tr>
<tr>
<td>Expert Opinion</td>
<td>a statement, achieved by consensus of the Panel, that is based on members' clinical training, experience, knowledge, and judgment for which there may or may not be evidence in the medical literature</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For some clinical issues, particularly diagnosis, there was little or no evidence from which to construct evidence-based statements. Where gaps in the evidence existed, the Panel provides guidance in the form of Clinical Principles or Expert Opinion with consensus achieved using a modified Delphi technique if differences of opinion emerged. A Clinical Principle is a statement about a component of clinical care that is widely agreed upon by urologists or other clinicians for which there may or may not be evidence in the medical literature. Expert Opinion refers to a statement, achieved by consensus of the Panel, that is based on members’ clinical training, experience, knowledge, and judgment for which there is no evidence.

Panel Formation and Review

The Urethral Stricture Panel was created in 2013 by the American Urological Association Education and Research, Inc. The Practice Guidelines Committee (PGC) of the AUA selected the Panel Co-Chairs who in turn appointed the additional panel members with specific expertise in this area. The AUA conducted a thorough peer review process. The draft guidelines document was distributed to 90 peer reviewers. The panel reviewed and discussed all submitted comments and revised the draft as needed. Once finalized, the guideline was submitted for approval to the PGC and the AUA Science and Quality Council. Then it was submitted to the AUA Board of Directors for final approval. Funding of the panel was provided by the AUA; panel members received no remuneration for their work.

The Urethral Stricture Amendment Panel was created in 2020 by the AUA. The Chair of the original guideline was appointed Chair of the amendment panel. The balance of the panel was composed of one member of the original panel and one content expert who was not a member of the original guideline panel. The outside expert was approved by the PGC Chairs. The AUA conducted a thorough peer review process and the draft guideline document was distributed to 50 peer reviewers, 21 of whom submitted a total of 67 comments. The Amendment Panel reviewed and discussed all submitted comments and revised the draft as needed. Once finalized, the guideline was submitted for approval to the PGC and Science and Quality Council. It was then submitted to AUA Board of Directors for final approval. Panel members received no remuneration for their work.

BACKGROUND

The urethra extends from the bladder neck, which is composed of smooth muscle circular fibers, to the meatus, with varying histological features and stromal support based on anatomical location. The components of the posterior urethra are lined with transitional epithelium, whereas the male anterior urethra is lined with pseudostratified columnar epithelium that changes to stratified squamous epithelium in the fossa navicularis. The posterior urethra includes both the prostatic and membranous urethra in men whereas in women it consists solely of the membranous urethra. The prostatic urethra extends from the distal bladder neck to the distal end of the veru montanum. The distal external sphincter mechanism surrounds the membranous urethra and is comprised of both intrinsic smooth muscle and rhabdosphincter. The anterior urethra includes the bulbar urethra, penile urethra, and fossa navicularis. This portion of the urethra is surrounded by the corpus spongiosum, which in the bulbar urethra is surrounded by the bulbocavernous muscle. The fossa navicularis is located entirely within the glans penis.

Urethral stricture is the preferred term for any abnormal narrowing of the anterior urethra, which runs from the bulbar urethra to the meatus and is surrounded by the corpus spongiosum. Urethral strictures are associated with varying degrees of spongionfibrosis. Narrowing of the posterior urethra, which lacks surrounding spongiosum, is thus referred to as a "stenosis." PFUI typically creates a distraction defect with resulting obstruction or obliteration.

Urethral strictures or stenoses are treated endoscopically or with urethroplasty. Endoscopic management is performed by either urethral dilation or direct vision internal urethrotomy (DVIU). There are a multitude of different urethroplasty techniques that can be generally divided into tissue transfer-involved procedures and non-tissue transfer-involved procedures. Anastomotic urethroplasty does not involve tissue transfer and can be performed in both a transsecting and non-transsecting manner. Excision and primary anastomosis urethroplasty involve transection and removal of the narrowed segment of urethra and corresponding spongionfibrosis with anastomosis of the two healthy ends of the urethra and corpus spongiosum. Non-transsecting anastomotic urethroplasty preserves the corpus spongiosum, thus
allowing the stricthed urethra to be excised and reanastomosed or incised longitudinally through the narrowed segment of the urethra and closed in a Heineke-Mikulicz fashion.

Techniques that involve tissue transfer can be categorized into single-stage and multi-stage procedures. In single-stage procedures, the urethra is augmented in caliber by transferring tissue in the form of a graft or flap. Multi-stage procedures use a graft as a urethral substitute for future tubularization.

Epidemiology

Geographic setting, socioeconomic factors, and access to healthcare can affect stricture etiology. In high income countries, the most common etiology of urethral stricture is idiopathic (41%) followed by iatrogenic (35%). Late failure of hypospadias surgery and stricture resultant from endoscopic manipulation (e.g., transurethral resection) are common iatrogenic reasons. In comparison, trauma (36%) is the most common cause in low- and middle-income countries, reflecting higher rates of road traffic injuries, less developed trauma systems, inadequate roadway systems, and conceivably socioeconomic factors leading to a higher prevalence of trauma-related strictures.\(^{13-15}\)

Restrictures in the bulbar urethra are more common than other anatomic locations in males; however, certain etiologies are closely associated with an anatomic segment of the urethra.\(^{13}\) For example, strictures related to hypospadias and lichen sclerosus ([LS]; previously termed balanitis xerotica obliterans) are generally located in the penile urethra, while traumatic strictures and stenoses tend to be located in the bulbar and posterior urethra.

Preoperative Assessment

PRESENTATION

Patients with urethral stricture most commonly present with decreased urinary stream and incomplete bladder emptying but may also demonstrate UTI, epididymitis, rising post-void residual (PVR), or decreased force of ejaculation. Additionally, patients may present with urinary spraying or dysuria.\(^{16}\)

PATIENT REPORTED OUTCOMES MEASURES

Patient reported measures (PRMs) help elucidate the presence and severity of patient symptoms and bother and thus may serve as an important component of urethral stricture diagnosis and management. While the American Urological Association Symptom Index (AUASI) includes items assessing decreased urinary stream and incomplete bladder emptying, it does not identify other symptoms seen in patients with a urethral stricture, such as urinary spraying and dysuria.\(^{16}\) Therefore, there is a need for development of a standardized urethral stricture PRM that can be used to assess symptoms, degree of bother, and quality of life (QoL) impact. A more disease specific standardized PRM will also allow for comparison of patient outcomes across research studies. Several have been developed in more recent years.\(^{17,18}\)

DIAGNOSIS

All patients being evaluated for LUTS should have a complete history and physical examination and urinalysis at a minimum. Decreased urinary stream, incomplete emptying, and other findings such as UTI should alert clinicians to include urethral stricture in the differential diagnosis. In the initial assessment of patients suspected of having a urethral stricture, a combination of PRMs to assess symptoms, uroflowmetry to determine severity of obstruction, and ultrasound PVR volume to identify urinary retention may be used. Patients with symptomatic urethral stricture typically have a reduced peak flow rate.\(^{19,20}\) Confirmation of a urethral stricture diagnosis is made with urethroscopy, retrograde urethrography (RUG), or ultrasound urethrography. In women, videourodinamic studies can be used to diagnose urethral strictures by demonstrating elevated detrusor voiding pressures and urethral obstruction on voiding cystourethrography (VCUG).\(^{21,22}\) Urethroscopy readily identifies a urethral stricture but does not delineate the location and length of strictures. RUG, with or without VCUG, allows for identification of stricture location in the urethra, length of the stricture, and degree of lumen narrowing.\(^{23,24}\) All of these stricture characteristics are important for subsequent treatment planning. Ultrasound urethrography can be used to identify the location, length, and severity of male urethral stricture.\(^{25}\) While ultrasound urethrography is a promising technique, further studies are needed to validate its value in clinical practice.
Preoperative assessment for definitive reconstruction should elicit details of the etiology, diagnostic information about length and location of the stricture, and prior treatments. In the case of PFUI, a detailed history should document all associated injuries and angiographic embolization of any pelvic vessels. The history should assess preoperative sexual function and urinary continence. Physical examination should include an abdominal and genital exam, digital rectal exam, and assessment of lower extremity mobility for operative positioning.

PATIENT SELECTION

Patient selection and proper surgical procedure choice are paramount to maximize the chance of successful outcome in the treatment of urethral stricture. The main factors to consider in decision making include stricture etiology, location, and severity; prior treatment; comorbidity; and patient preference. As with any operation, surgeons should consider a patient’s goals, preferences, comorbidities, and fitness for surgery prior to performing urethroplasty.

OPERATIVE CONSIDERATIONS

Before proceeding with surgical management of a urethral stricture, the physician should provide an appropriate antibiotic to reduce surgical site infections. Preoperative urine cultures are recommended to guide antibiotic choice, and active UTIs must be treated before urethral stricture intervention. Prophylactic antibiotic choice and duration should follow AUA Best Practice Policy Statement. To avoid bacterial resistance, antibiotics should be discontinued after a single dose or within 24 hours. Antibiotics can be extended in the setting of an active UTI or if there is an existing indwelling catheter. In the setting of endoscopic urethral stricture management, oral fluoroquinolones are more cost effective than intravenous cephalosporins. Antimicrobial prophylaxis is recommended at the time of urethral catheter removal in patients with certain risk factors.

Positioning of the extremities should be careful to avoid pressure on the calf muscles, peroneal nerve, and ulnar nerve when using the lithotomy position. Use of sequential compression devices is recommended to reduce deep venous thromboembolism and nerve compression injuries. Perioperative parenteral deep venous thromboembolism prophylaxis is a consideration in select circumstances for open reconstruction.

POSTOPERATIVE CARE

A urinary catheter should be placed following urethral stricture intervention to divert urine from the site of intervention and prevent urinary extravasation. Either urethral catheter or suprapubic (SP) cystostomy is a viable option; a urethral catheter is thought to be optimal as it may serve as a stent around which the site of urethra intervention can heal. The length of urinary catheterization is widely variable, with a shorter recommended time for endoscopic interventions than open urethral reconstruction.

Urethrography or voiding cystography is typically performed two to three weeks following open urethral reconstruction to assess for complete urethral healing. Replacement of the urinary catheter is recommended in the setting of a persistent urethral leak to avoid tissue inflammation, urinoma, abscess, and/or urethrococutaneous fistula. A urethral leak will heal in almost all circumstances with a longer duration of catheter drainage.

COMPLICATIONS

Erectile dysfunction (ED), as measured by the International Index of Erectile Function (IIEF) may occur transiently after male urethroplasty with resolution of nearly all reported symptoms approximately six months postoperatively. Meta-analysis has demonstrated the risk of new onset ED following anterior urethroplasty to be ~1%. Erectile function following urethroplasty for PFUI does not appear to significantly change as a result of surgery. ED in this cohort may be related to the initial pelvic trauma rather than the subsequent urethral reconstruction.

Ejaculatory dysfunction manifested as pooling of semen, decreased ejaculatory force, ejaculatory discomfort, and decreased semen volume has been reported by up to 21% of men following bulbar urethroplasty. Urethroplasty technique may play a role in the occurrence of ejaculatory dysfunction but the exact etiology remains uncertain. Conversely, some patients, as measured by the Men’s Sexual Health Questionnaire, will notice an improvement in ejaculatory function following bulbar urethroplasty, particularly those with pre-operative ejaculatory dysfunction related to obstruction caused by the stricture. Data on ejaculatory function in men undergoing penile urethroplasty or urethroplasty for PFUI is limited.
FOLLOW UP

Successful treatment for urethral stricture (endoscopic or surgical) is most commonly defined as no further need for surgical intervention or instrumentation. Some studies use the absence of postoperative or post-procedural patient reported obstructive voiding symptoms and/or peak uroflow >15m/sec as a benchmark for successful treatment. Additional measures of success that have been used alone or in combination include urethral patency assessed by urethro-cystoscopy, absence of recurrent stricture on urethrography, PVR urine <100mL, "unobstructed" flow curve shape on uroflowmetry, absence of UTI, ability to pass a urethral catheter, and patient-reported improvement in LUTS. Consensus has not been reached on the optimal postoperative surveillance protocol to identify stricture recurrence following urethral stricture treatment.

Guideline Statements

DIAGNOSIS

1. Clinicians should include urethral stricture in the differential diagnosis of patients who present with decreased urinary stream, incomplete emptying, dysuria, urinary tract infection, and after rising post-void residual. (Moderate Recommendation; Evidence Level: Grade C)

The physical examination should include an abdominal and pelvic examination noting masses, tenderness, and presence of hernias. The pelvic examination should include palpation of the external genitalia, bladder base in females, and urethra in both sexes. The pelvic floor muscles in both sexes should be palpated for locations of tenderness and trigger points. The pelvic support for the bladder, urethra, vagina, and rectum should be documented. A focused evaluation to rule out vaginitis, urethritis, tender prostate, urethral diverticulum, or other potential sources of pain or infection is important. For a more detailed discussion, please see Weiss 2001. A trial of antibiotic therapy is appropriate when infection is suspected; if symptoms resolve a course of antibiotic suppression may be considered to allow for full recovery. A brief neurological exam to rule out an occult neurologic problem and an evaluation for incomplete bladder emptying to rule out occult retention should be done on all patients.

The basic laboratory examination includes a urinalysis and urine culture. A proper hematuria workup should be performed for patients with unevolved hematuria, and considered for patients with tobacco exposure given the high risk of bladder cancer in smokers. Urine culture may be indicated even in patients with a negative urinalysis in order to detect lower levels of bacteria that are clinically significant but not readily identifiable with a dipstick or on microscopic exam.

2. After performing a history, physical examination, and urinalysis, clinicians may use a combination of patient reported measures, uroflowmetry, and ultrasound post-void residual assessment in the initial evaluation of suspected urethral stricture. (Clinical Principle)

A number of self-report instruments, including the AUASI and UDI-6 have been used to evaluate men and women for LUTS. Individual questions from these instruments may be used to detect symptoms consistent with stricture disease.

If symptoms and signs suggest the presence of a stricture, noninvasive measures such as uroflowmetry may definitively delineate low flow, which is typically considered to be <12 mL/second. Similarly, ultrasonographic PVR measurement may detect poor bladder emptying. The presence of voiding symptoms as described above, in combination with reduced peak flow rate for age, place patients at higher probability for urethral stricture, therefore indicating definitive evaluation such as cystoscopy, RUG, VCUG, or ultrasound urethrography.

3. Clinicians should use urethro-cystoscopy, retrograde urethrography, voiding cystourethrography, or ultrasound urethrography to make a diagnosis of urethral stricture. (Moderate Recommendation; Evidence Level: Grade C)

Endoscopy and/or radiological imaging of the urethra is essential for confirmation of the diagnosis, assessment of stricture severity (e.g., staging), and procedure selection. History, physical examination, and adjunctive measures
Urethral Stricture Disease

(Statements 1 and 2) cannot definitively confirm a urethral stricture. Urethroscopy identifies and localizes urethral stricture and allows evaluation of the distal caliber, but the length of the stricture and the urethra proximal to the urethral stricture cannot be assessed in most cases. When flexible cystoscopy does not allow visual assessment proximal to the urethral stricture, small caliber cystoscopy with a ureteroscope or flexible hysteroscope can be useful adjuncts. MRI can provide important detail in select cases (i.e., PFUI, diverticulum, fistula, cancer). In women, imaging of the urinary tract using endourethral MRI, ultrasonogram, and CT scan can confirm presence of periurethral fibrosis and exclude associated abnormalities.71

Retrograde Urethrography

RUG, with or without VCUG, remains the study of choice for delineation of stricture length, location, and severity in men.23, 24, 78 However, the image quality and accuracy of RUG is operator-dependent; surgical planning should be based on high quality images generated by experienced practitioners or the surgeon him/herself.79

The modestly invasive nature of RUG reflects the potential risks, including patient discomfort, UTI, hematuria, and contrast extravasation. UTI is rare and contrast extravasation is very rare in expert hands. Exposure to the contrast puts the patient at risk for a contrast reaction, should there be an allergy. The risk is very low in the absence of inadvertent extravasation and may be mitigated by pre-medication with oral corticosteroids and histamine blockers. Complete or near complete occlusion of the urethra may make the assessment of the urethra proximal to the stricture difficult. In this instance, RUG may be combined with antegrade VCUG or other methods to define the extent of the stricture.

Voiding Cystourethrography

VCUG performed by passing a small catheter proximal to the stricture, by retrograde filling of the bladder during RUG, or by antegrade filling via a SP tube, allows visualization of the urethra but is not always sufficient to completely delineate the distal extent of an urethral stricture. When used in conjunction with urodynamics to assess complex voiding dysfunction, elevated detrusor voiding pressures and urethral narrowing on VCUG indicate a clinically significant urethral stricture or other obstructive process.80

Ultrasound Urethrography

Ultrasound urethrography may serve to diagnose the presence of urethral stricture as well as describe the location, length, and severity of narrowing of strictures. It has a high sensitivity and specificity in the male anterior urethra but shares the drawbacks of RUG, including patient discomfort and dependence on a skilled ultrasonographer.25 One study in women reported that the technique appeared to identify and characterize female urethral strictures adequately.81 Some advocate the use of urethral sonography (ultrasound urethrography) to define the extent of spongiform and absolute length of the urethral stricture,82-95 although this is not strictly required and is not used by a majority of stricture experts.96

4. Clinicians planning non-urgent intervention for a known stricture should determine the length and location of the urethral stricture. (Expert Opinion)

Determination of urethral stricture length and location allows the patient and urologist to engage in an informed discussion about treatment options, perioperative expectations, and expected outcomes following urethral stricture therapy. In addition, preoperative planning permits operative and anesthetic planning.

5. Surgeons may utilize urethral endoscopic management (e.g., urethral dilation or direct visual internal urethrotomy) or immediate suprapubic cystostomy for urgent management of urethral stricture, such as discovery of symptomatic urinary retention or need for catheterization prior to another surgical procedure. (Expert Opinion)

When urethral strictures are identified at the time of catheter placement for another surgical procedure, assessment of the need for catheterization should be made. Urethral catheter placement may not be required for surgical procedures that are short in duration. If catheterization is deemed necessary, the primary consideration should be safe urinary drainage. Urethral strictures may be dilated in this setting to allow catheter insertion, and dilation over a guidewire is recommended to prevent false passage formation or rectal injury.
Alternatively, internal urethrotomy may be performed, particularly if the stricture is too dense to be adequately dilated. SP cystostomy may also be performed to provide urinary drainage at the time of surgery if these initial maneuvers are unsuccessful, or when subsequent definitive treatment for urethral stricture is planned in the near future.

6. Surgeons may place a suprapubic cystostomy to promote “urethral rest” prior to definitive urethroplasty in patients dependent on an indwelling urethral catheter or intermittent self-dilation. *(Conditional Recommendation; Evidence Level: Grade C)*

Proper evaluation of a urethral stricture may require a period of “urethral rest,” without urethral instrumentation to determine the true severity of the stricture including its degree of narrowing. Men with a urethral stricture who have been managed with either an indwelling urethral catheter or self-dilation should generally undergo SP cystostomy placement prior to imaging. Experts agree that urethral rest via SP cystostomy promotes a safe transition strategy for patients with unstable strictures being referred for urethroplasty. Tissue recovery and stricture maturation can be expected in 4-6 weeks, which allows the stricture to mature and enables accurate radiographic and/or endoscopic identification in preparation for definitive management. If a patient can forgo clean intermittent catheterization (CIC) without acute urinary retention, a SP tube may be omitted during urethral rest.97-99 This allows the full length of the stricture to develop and accurate determination of definitive treatment options to be made. This is thought to maximize success by not underestimating the length of stricture and degree of spongiform fibrosis. A similar period of observation is recommended before reassessing a stricture after failure or dilation or DVIU.

DILATION/INTERNAL URETHROTOMY/URETHROPLASTY

7. Surgeons may offer urethral dilation, direct visual internal urethrotomy, or urethroplasty for the initial treatment of a short (<2cm) bulbar urethral stricture. *(Conditional Recommendation; Evidence Level: Grade C)*

Short bulbar urethral strictures may be treated by dilation, DVIU, or urethroplasty. Urethral dilation and DVIU have similar long-term outcomes in short strictures, with success ranging from 35-70%.100-102 The success of endoscopic treatment depends on the location and length of the stricture, with the highest success rates found in those with bulbar urethral strictures <1cm,103-105 Conversely, success rates for dilation or DVIU of strictures >2cm are very low,101, 105 Drug coated balloons have not been assessed in RCTs for first-time treatment of anterior urethral stricture.

Urethroplasty has a higher long-term success rate than endoscopic treatment, ranging from 80-95%. Urethroplasty may be offered as the initial treatment for a short bulbar urethral stricture, but the higher success rate of this treatment compared to endoscopic treatment must be weighed against the increased anesthesia requirement and higher morbidity of urethroplasty.

In patients with a short (<2cm) bulbar urethral stricture, non-transecting substitution urethroplasty results in fewer penile complications (e.g., poor glans filling, penile shortening) compared to transecting urethroplasty.106 However, there appears to be no difference in ED measured by IIEF at 12 months with transecting compared to non-transecting urethroplasty.106-109

8. Surgeons may perform either dilation or direct visual internal urethrotomy when performing endoscopic treatment of a urethral stricture. *(Conditional Recommendation; Evidence Level: Grade C)*

Dilation and DVIU have similar success and complication rates and can be used interchangeably for the initial treatment of short urethral strictures. Few studies exist that compare different methods of performing DVIU, but cold knife and laser incision of the stricture scar appear to have similar success rates and may be used interchangeably.110, 111 Other methods of incision may be used experimentally, such as PlasmaKinetic incision.61 A small experimental study suggests that holmium: YAG laser urethrotomy may have higher success rates in iatrogenic strictures.110

Clinicians may endoscopically inject pharmacological agents into a urethral stricture at the time of DVIU to reduce risk of stricture recurrence. The few studies available showed a generally consistent lower stricture
reurrence rate when steroids were added to DVIU, although the findings did not reach statistical significance and follow up was relatively short. Mitomycin C injected at the time of DVIU has also been shown to reduce stricture recurrence rate, although data is limited regarding long term follow up.

9. Surgeons may safely remove the urethral catheter within 72 hours following uncomplicated dilation or direct visual internal urethrotomy. (Conditional Recommendation; Evidence Level: Grade C)

The reported length of catheterization after dilation or DVIU is highly variable in the literature, ranging from one to eight days. There is no evidence that leaving the catheter longer than 72 hours improves safety or outcome, and catheters may be removed after 24-72 hours. Catheters may be left in longer for patient convenience or if in the surgeon’s judgment early removal will increase the risk of complications.

10. In patients who are not candidates for urethroplasty, clinicians may recommend self-catheterization after direct visual internal urethrotomy to maintain temporary urethral patency. (Conditional Recommendation; Evidence Level: Grade C)

Studies using varying self-catheterization schedules after DVIU, ranging from daily to weekly, have demonstrated that stricture recurrence rates were significantly lower among patients performing self-catheterization (RR: 0.51; 95% CI: 0.32-0.81; p = 0.004). The optimal protocol for DVIU plus self-catheterization remains uncertain. However, data suggests that performing self-catheterization for greater than 4 months after DVIU reduced recurrence rates compared to performing self-catheterization for less than 3 months. Even though the risk of UTI does not appear to be increased in patients performing self-catheterization after DVIU, the ability to continue with self-catheterization may be limited in some patients by manual dexterity or pain with catheterization.

11 a. Surgeons should offer urethroplasty, instead of repeated endoscopic management for recurrent anterior urethral strictures following failed dilation or direct visual internal urethrotomy. (Moderate Recommendation; Evidence Level: Grade C)

11 b. Surgeons may offer urethral dilation, or direct visual internal urethrotomy, combined with drug-coated balloons, for recurrent bulbar urethral strictures <3cm in length. (Conditional Recommendation; Evidence Level: Grade B)

Urethroplasty, even in the setting of failed endoscopic management, offers success rates in the range of 80-90%. Urethral strictures that have been previously treated with dilation or DVIU are unlikely to be successfully treated with another endoscopic procedure, with failure rates of >80%. Repeated endoscopic treatment may cause longer strictures and may increase the complexity of subsequent urethroplasty. In patients who are unable to undergo, or who prefer to avoid, urethroplasty, repeated endoscopic procedures or intermittent self-catheterization may be considered as palliative measures.

The recent OPEN and ROBUST III trials provide new insights into the evolving role for endoscopic management in the treatment of recurrent bulbar urethral stricture. If replicated in additional patient populations at longer follow-up, the two RCTs taken together suggest that future patients will face a wider range of treatment options for recurrent bulbar urethral stricture and that a shared decision-making approach to counseling may be advisable.

Using a patient-centered approach, the multicenter OPEN pragmatic trial used patient reported voiding symptoms as the primary outcome in a randomized superiority comparison of endoscopic urethrotomy versus open urethroplasty in men with recurrent bulbar urethral stricture <2cm in length. There was not a statistically significant difference in urethral stricture specific PRMs between the two groups over the 24-month study period: impact on daily activities and satisfaction with sexual function between the two groups was equivalent. Notably, participants who underwent urethroplasty were at a 48% reduced risk for reintervention (HR: 0.52; 95% CI: 0.31-0.89). Of those who received urethrotomy, 39% experienced a recurrence versus 19% in the urethroplasty group (p=0.001). Furthermore, participants in the urethroplasty group had 2.6 times greater odds of experiencing an improvement in their maximum flow rate.

Copyright © 2023 American Urological Association Education and Research, Inc.®
at 12-24 months than the participants in the urethroplasty group (OR: 2.6; 95% CI: 1.1–6.1; p = 0.024).

The ROBUST III multicenter RCT used urethral patency at 6 months and freedom from retreatment at 1 year as the primary and secondary outcomes in a comparison of endoscopic treatment of the stricture combined with paclitaxel-coated urethral balloon versus DVIU/dilation in patients with recurrent anterior urethral strictures <3cm in length. Those who underwent endoscopic treatment combined with the drug-coated balloon had improved freedom from intervention at 1 year compared to DVIU/dilation alone (83.2% versus 21.7%). The 3-year outcomes for the same drug-coated balloon from the Robust I trial demonstrated a 67% functional success.

Although the device is approved by the FDA for anterior urethral strictures, the trial was not powered to assess results in the subset of participants with penile urethra strictures, which constituted only 10% of the overall cohort, this panel’s recommendation for use of drug-coated balloons is restricted to recurrent bulbar urethral strictures. Furthermore, the efficacy of repeated use of the drug coated balloon has not been ascertained and is not recommended. Most side effects were similar across treatment arms in ROBUST III, except hematuria and dysuria, which were more common after drug coated balloon treatment (11% versus 2% for both events). Significant levels of paclitaxel were measured in semen; it is recommended that men receiving this treatment utilize contraception through 6 months posttreatment if their partner has child-bearing potential.

The findings of these two studies, highlight the importance of a patient centered approach to recurrent urethral strictures, challenges inherent in the evidence reviewed in support of this guideline, and opportunities for future directions. As individual studies without replication, both OPEN and ROBUST III are at greater risk for bias. The design of ROBUST III, with features of an efficacy study in a highly selected population, may not easily generalize to anterior urethral stricture patients broadly. In contrast, the pragmatic design of OPEN and performance at 50 sites across the UK National Health Service should assure greater generalizability. Further, each trial used a different conceptual choice of primary outcome. The investigators of the OPEN study emphasized that symptoms are likely to be the central concern for patients with bulbar urethral strictures and the reason why they look for treatment. ROBUST III used patency (ability to pass a flexible cystoscope) and repeat intervention, rigorous and ascertainable endpoints that value freedom from re-intervention over symptoms.

12. Surgeons who do not perform urethroplasty should refer patients to surgeons with expertise. (Expert Opinion)

When evaluating a patient with a recurrent urethral stricture, a physician who does not perform urethroplasty should consider referral to a surgeon with experience in this technique due to the higher rate of successful treatment compared to repeat endoscopic management. The relationship between surgical volume and quality is an area for future investigation. There are cases series that suggest that better outcomes following urethroplasty are associated with greater surgeon experience.

13. Surgeons may initially treat meatal or fossa navicularis strictures with either dilation or meatotomy. (Clinical Principle)

First time presentation of an uncomplicated urethral stricture confined to the meatus or fossa navicularis can be treated with simple dilation or meatotomy, with or without guidewire placement, as long as it is not associated with previous hypospadias repair, prior failed endoscopic manipulation, previous urethroplasty, or LS. Strictures related to hypospadias and LS require unique treatment strategies. However, in the setting of LS there is some evidence that extended meatotomy in conjunction with high-dose topical steroids may decrease the risk of recurrence as compared to meatotomy alone. Additionally, no evidence exists on the optimal caliber of dilation or the need to implement a post dilation CIC regimen to reduce stricture recurrence.

14. Surgeons should offer urethroplasty to patients with recurrent meatal or fossa navicularis strictures. (Moderate Recommendation; Evidence Level: Grade C)

Meatal and fossa navicularis strictures refractory to endoscopic procedures are unlikely to respond to further endoscopic treatments. Furthermore, urethroplasty is the best option for completely obliterated strictures or strictures associated
14. Surgeons should offer urethroplasty as the initial treatment for patients with long (≥2cm) bulbar urethral strictures given the low success rate of direct visual internal urethrotomy or dilation. (Moderate Recommendation; Evidence Level: Grade C)

Longer strictures are less responsive to endoscopic treatment, with success rates of only 20% for strictures ≥4cm in the bulbar urethra. The success rate for buccal mucosa graft urethroplasty for strictures of this length is greater than 80%.43, 160, 161

Given the low efficacy of endoscopic treatment, urethroplasty should be offered to patients with long urethral strictures. Urethroplasty may be performed using a variety of techniques based on the experience of the surgeon, most often through substitution or augmentation of the narrowed segment of the urethra.

15. Surgeons should offer urethroplasty to patients with penile urethral strictures given the expected high recurrence rates with endoscopic treatments. (Moderate Recommendation; Evidence Level: Grade C)

Strictures involving the penile urethra are more likely to be related to hypospadias, LS, or iatrogenic etiologies when compared to strictures of the bulbar urethra. These strictures are unlikely to respond to dilation or urethrotomy, except in select cases of previously untreated short strictures.100, 101, 105, 117, 119 Given the low likelihood of success with endoscopic treatments, most patients with penile urethral strictures should be offered urethroplasty at the time of diagnosis, avoiding repeated endoscopic treatments. When compared to bulbar urethral strictures, penile urethral strictures are more likely to require tissue transfer and/or a staged approach.143, 150

When performing single-stage urethroplasty, penile fasciocutaneous flaps and oral mucosal grafts have been used in differing configurations.49, 55, 151-157 Success rates in penile urethroplasty for properly selected patients appear similar regardless of tissue and technique used.154, 158, 159

16. Surgeons may reconstruct long multi-segment strictures with one-stage or multi-stage techniques using oral mucosal grafts, penile fasciocutaneous flaps, or a combination of these techniques. (Moderate Recommendation; Evidence Level: Grade C)

Multi-segment strictures (frequently referred to as panurethral strictures) are most commonly defined as strictures >10cm spanning long segments of both the penile and bulbar urethra. These strictures are particularly complex to treat surgically.17 Several treatment options exist including long-term endoscopic management, urethroplasty, or perineal urethrostomy. Clinicians should be aware that panurethral strictures are very unlikely to be treated successfully with endoscopic means, which
offer only temporary relief of obstruction. However, urethroplasty in these instances is also more complicated, time-consuming, and has a higher failure rate as compared to urethroplasty for less complicated strictures. Thus, some patients may choose repeat endoscopic treatments, with or without a self-dilation protocol, or a perineal urethrostomy, in order to avoid complex urethral reconstructive surgery.

Reconstruction of panurethral strictures should be addressed with all of the tools in the reconstructive armamentarium including fasciocutaneous flaps, oral mucosal grafts, or other ancillary tissue sources, and may require a combination of these techniques. These labor intensive and technically challenging surgeries are best performed at established high volume reconstructive centers. Several tissue sources have been reported including oral mucosal grafts, various skin grafts, and genital fasciocutaneous flaps. Regardless of technique and combinations, success rates appear similar in all of these small series. Superior efficacy of “double graft” procedures has not yet been demonstrated and these techniques are typically applied to select instances of urethral obliteration. Staged procedures may offer a conservative approach suited to the most complex strictures such as those related to failed hypospadias surgery.

Patients undergoing perineal urethrostomy have reported high QoL, although surgical revision may be necessary to maintain patency over long term follow up. Successful treatment with perineal urethrostomy has been reported in both traumatic and LS strictures. There are no data demonstrating that a specific surgical technique is associated with a higher patient QoL or long term patency rate.

18 a. Surgeons may offer perineal urethrostomy as a long-term treatment option to patients as an alternative to urethroplasty. (Conditional Recommendation; Evidence Level: Grade C)

18 b. Surgeons should offer perineal urethrostomy as a long-term treatment option to patients as an alternative to urethroplasty in patient populations at high risk for failure of urethral reconstruction. (Expert Opinion)

Perineal urethrostomy can be used as a staged or permanent option for patients with anterior urethral strictures in order to establish unobstructed voiding and improve QoL. Reasons to perform perineal urethrostomy (Table 3) include recurrent or primary complex anterior stricture, medical co-morbidities precluding extended operative time, extensive LS, numerous failed attempts at urethroplasty, and patient choice.

Table 3: Considerations in Decision Making for Perineal Urethrostomy

<table>
<thead>
<tr>
<th>Consideration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent strictures failing prior reconstructions</td>
</tr>
<tr>
<td>Accustomed to seated voiding</td>
</tr>
<tr>
<td>Buried penis</td>
</tr>
<tr>
<td>Multiple comorbidities</td>
</tr>
<tr>
<td>Complex penile strictures, including reoperative hypospadias</td>
</tr>
<tr>
<td>Lichen Sclerosus</td>
</tr>
<tr>
<td>Poor access to urologic care</td>
</tr>
<tr>
<td>Urinary continence status</td>
</tr>
</tbody>
</table>

19 a. Surgeons should use oral mucosa as the first choice when using grafts for urethroplasty. (Expert Opinion)

19 b. Surgeons may use either buccal or lingual mucosal grafts as equivalent alternatives. (Strong Recommendation; Evidence Level: Grade A)

Oral mucosa is the preferred graft for substitution urethroplasty. Patient satisfaction is higher for oral mucosa due to less post-void dribbling and penile skin problems.

Oral mucosa may be harvested from the inner cheeks (buccal), which provide the largest graft area, the undersurface of the tongue (lingual), or the inner lower lip (labial). Lingual mucosa is thinner than buccal mucosa, and thus may provide an advantage in reconstructive procedures of the distal urethra and meatus by causing less restriction of the urethral lumen. Harvest of buccal mucosa from the inner cheek results in fewer complications and better outcomes as compared to a lower lip donor site. A meta-analysis of 12 published studies found no difference in the success rate of buccal
and lingual mucosal grafts when the donor sites were compared (RR:1.03; 95% CI:0.96-1.10). The same meta-analysis found no significant difference between mucosal sites for risk of stricture complications or risk of fistula/wound dehiscence. However, buccal mucosal grafts carried a higher risk of donor site swelling, oral numbness, and difficulty with mouth opening, while patients undergoing lingual mucosal grafts demonstrated higher risk of difficulty with speech and difficulty with tongue protrusion.

When harvesting buccal mucosa from the inner cheek, the donor site may safely be left open to heal by secondary intention or closed primarily. A meta-analysis of five RCTs found no difference between closure and non-closure procedures when focusing on oral pain, need for secondary oral procedures, cosmetic defects, oral numbness, salivary problems, or impaired mouth opening. Ultimately the decision to close the donor site primarily or leave it open is at the discretion of the surgeon; large grafts required for staged urethroplasty often create defects that cannot be closed.

20. Surgeons should not perform substitution urethroplasty with allograft, xenograft, or synthetic materials except under experimental protocols. (Expert Opinion)

Use of non-autologous grafts may be indicated in the patient who has failed a prior urethroplasty and has no tissue available for reoperative substitution urethroplasty. However, experience to date is limited and the long term success rates are unknown. Such patients should be considered for referral to a center involved in clinical trials using allograft, xenograft, engineered or synthetic materials.

21. Surgeons should not perform a single-stage tubularized graft urethroplasty. (Expert Opinion)

Tubularized urethroplasty consists of a technique in which a graft or flap is rolled into a tube over a catheter to completely replace a segment of urethra. This approach, when attempted in a single stage, has a high risk of restenosis and should be avoided. This is distinct from a tubularized graft that is supported in its entirety by a suitable graft bed (e.g., 1-stage tubularized buccal mucosa graft of the fossa navicularis urethra supported by corpus spongiosum of glans). When no alternative exists, a tubularized flap can be performed with results that are inferior to onlay flaps. Currently, available alternatives include combined tissue transfer (e.g., a dorsal buccal graft combined with a ventral skin flap in a single stage), combined dorsal and ventral grafts (e.g., a dorsal graft in the technique of Asopa and a ventral onlay graft), or staged urethroplasty with local skin flaps or oral mucosa grafts.

22. Surgeons should not use hair-bearing skin for substitution urethroplasty. (Clinical Principle)

The use of hair-bearing skin for substitution urethroplasty may result in urethral calculi, recurrent UTI and a restricted urinary stream due to hair obstructing the lumen, and therefore should be avoided except in rare cases where no alternative exists. Intraurethral hair should be suspected in patients who report these symptoms and have a history of prior tubularized urethroplasty or surgery for proximal hypospadias, in which scrotal skin may have been incorporated into the repair and demonstrate later hair growth.

URETHRAL RECONSTRUCTION AFTER PELVIC FRACTURE URETHRAL INJURY

23. Clinicians should use retrograde urethrography with voiding cystourethrogram and/or retrograde + antegrade cystoscopy for preoperative planning of delayed urethroplasty after pelvic fracture urethral injury. (Moderate Recommendation; Evidence Level: Grade C)

Pre-operative evaluation of the distraction defect after PFUI should include RUG, VCUG, and/or retrograde urethroscopy. The VCUG may include a static cystogram to determine the competency of the bladder neck mechanism and the level of the bladder neck in relation to the symphysis pubis. Other adjunctive studies may include antegrade cystoscopy, with or without fluoroscopy, and pelvic CT or MRI to assess the proximal extent of the injury, degree of malalignment of the urethra, and length of the defect.
24. Surgeons should perform delayed urethroplasty instead of delayed endoscopic procedures after urethral obstruction/obliteration due to pelvic fracture urethral injury. (Expert Opinion)

The acute treatment of PFUI includes endoscopic primary catheter realignment or insertion of a SP tube. The resulting distraction defect, stenosis, or obliteration should be managed with delayed perineal anastomotic urethroplasty. Repeated endoscopic maneuvers including CIC should be avoided because they are not successful in the majority of PFUI, increase patient morbidity, and may delay the time to anastomotic reconstruction. Clinicians should avoid blind "cut to the light" procedures in the obliterated PFUI since they are rarely successful in long term follow up.

Anastomotic reconstruction is performed through a perineal approach. Excision of the scar tissue and wide spatulation of the anastomosis is required. Several methods to gain urethral length and reduce tension can be employed when necessary including mobilization of the bulb, crural separation, inferior pubectomy, and supracrural rerouting, but in most cases the latter two maneuvers are not required. In rare cases, trans abdominal or transpubic techniques may be required. In order to potentially decrease the potential for vascular compromise to the urethra, a bulbar artery sparing approach has been described. No comparative study has yet shown any definitive benefit. Clinicians should refer patients to appropriate tertiary care centers for reconstruction when necessary.

25. Definitive urethral reconstruction for pelvic fracture urethral injury should be planned only after major injuries stabilize and patients can be safely positioned for urethroplasty. (Expert Opinion)

The timing of urethral reconstruction in PFUI is highly dependent on patient factors. No optimal time to perform urethral reconstruction has been established, with studies reporting a wide range of times from 6 weeks to 4 years. Reconstruction should occur when patient factors allow the surgery to be performed, usually within 3 to 6 months after the trauma. Patient positioning in the lithotomy (standard, high, or exaggerated) may be limited until orthopedic and lower extremity soft tissues injuries have resolved.

FEMALE URETHRAL RECONSTRUCTION

26. Surgeons may reconstruct female urethral strictures using oral mucosal grafts, vaginal flaps, or a combination of these techniques. (Moderate Recommendation; Evidence Level: Grade C)

Given the low efficacy of endoscopic treatment, urethroplasty should be offered to patients with female urethral strictures. Urethroplasty may be performed using a variety of techniques based on the experience of the surgeon. Multiple studies have demonstrated similar outcomes for oral mucosa grafts (dorsal and ventral), vaginal flaps, or a combination of these techniques, with success rates between 69-95%.

BLADDER NECK CONTRACTURE/ VESICOURETHRAL STENOSIS

27. Surgeons may perform a dilation, bladder neck incision, or transurethral resection for bladder neck contracture after endoscopic prostate procedure. (Expert Opinion)

Treatment of bladder neck contractures following endoscopic prostate procedures can be performed with either a bladder neck incision or bladder neck resection depending on surgeon preference, with comparable outcomes expected. Repeat endoscopic treatment may be necessary for successful outcomes. No studies exist that compare the different treatment strategies for bladder neck contractures after endoscopic prostate procedures.

28. Surgeons may perform a dilation, vesicourethral incision, or transurethral resection for post-prostatectomy vesicourethral anastomotic stenosis. (Conditional Recommendation; Evidence Level: Grade C)

Treatment of first-time vesicourethral anastomotic stenosis is successful in about 50-80% of cases, with all techniques having similar success rates. Success appears to be lower in cases with prior pelvic radiation; however, prospective cohort studies including radiated and nonradiated patients are lacking. Repeat endoscopic treatment may be necessary for successful treatment.
There is conflicting data about the utility of Mitomycin-C for the treatment of recurrent vesicourethral stenosis, with further study necessary to validate its use. Patients should be made aware of the risk of incontinence after any of these procedures.

29. Surgeons may perform robotic or open reconstruction for recalcitrant stenosis of the bladder neck or post-prostatectomy vesicourethral anastomotic stenosis. (Conditional Recommendation; Evidence Level: Grade C)

The treatment of recalcitrant vesicourethral anastomotic stenosis (VUAS) or bladder neck contracture must be tailored to the preferences of the patient, taking into consideration prior radiotherapy and the degree of urinary incontinence. Reconstruction is challenging and may cause significant urinary incontinence requiring subsequent artificial urinary sphincter implantation. VUAS or bladder neck reconstruction can be performed robotically or open. Robotic-assisted reconstruction patency rates range from 72.7-75%. In patients who were preoperatively continent, 82% were continent post-operatively. Open VUAS or bladder neck reconstruction can be performed retroperitoneally or perineally with patency rates ranging from 70-100%. In patients continent of urine pre-operatively who had a retropubic approach, 10% were continent post-operatively, while those who had a perineal reconstruction had an 83.3% incontinence rate post-operatively. Success rates are lower after radiation.

For the patient who does not desire urethroplasty, repeat urethral dilation, incision, or resection of the stenosis is appropriate. Intermittent self-dilation with a catheter may be used to prolong the time between operative interventions. SP diversion is an alternative.

SPECIAL CIRCUMSTANCES

30. In men who require chronic self-catheterization (e.g., neurogenic bladder), surgeons may offer urethroplasty as a treatment option for urethral stricture causing difficulty with intermittent self-catheterization. (Expert Opinion)

In men with neurogenic bladder (NGB) urethral pathology may include stricture, diverticulum, fistula, and erosion.

Bladder function must be considered prior to urethroplasty as significant underlying detrusor dysfunction it may alter the course of treatment. It is unclear if anterior urethroplasty in this setting has higher rates of complications, stricture recurrence, or reoperation when compared to men with anterior urethral stricture and intact bladder function. There is some evidence to suggest that urethral reconstruction, if offered at an early stage in men with stricture and NGB, can achieve outcomes comparable to men without NGB. It is not definitively known if resumption of CIC following anterior urethroplasty impacts the risk of stricture recurrence.

LICHEN SCLEROSUS

LS is a chronic inflammatory, scar forming dermatologic disease that predominately affects the genitalia. In women, urethral stricture is not a common feature of LS. In men, LS has a wide spectrum of disease presentation and severity, and thus warrants particular attention from urologists. Patients with LS may present with penile skin scarring, adhesions to the glans, and is a frequent contributor to the development of acquired buried penis. Additionally, LS is capable of malignant transformation, progressing to squamous cell carcinoma in 2-8% of patients. This is important, in that male patients presenting with acquired buried penis also have concomitant urethral strictures in 31-47% of cases, thereby requiring careful evaluation and management.

Urethroplasty is challenging in this population, as patients are more likely to be active tobacco smokers, have a higher body mass index, hypertension, diabetes mellitus, coronary artery disease, and have longer urethral strictures compared to non-LS urethral strictures. Urethroplasty often requires multiple oral mucosa grafts to reconstruct long-segment strictures, often with a lower success rate compared to non-LS urethral strictures, and thus a comprehensive discussion of the various management strategies is warranted.

31. Clinicians may perform biopsy for suspected lichen sclerosus and must perform biopsy if urethral cancer is suspected. (Clinical Principle)

The external manifestations of LS in males can range in severity from mild to aggressive.
found in the genital region and may be associated with urethral strictures.207, 215, 216 LS may mimic many other skin diseases; therefore, biopsy is the best method for definitive diagnosis. The rate of squamous cell carcinoma in male patients with LS has been reported to be 2-8.6\%, further indicating the need for biopsy in selected cases both to confirm the diagnosis as well as to exclude malignant or premalignant changes.208, 216-218

32. In lichen sclerosus-proven urethral stricture, surgeons should not use genital skin for reconstruction. (Strong Recommendation; Evidence Level: Grade B)

Goals of management of LS should be to alleviate symptoms, prevent and treat urethral stricture disease and prevent and detect malignant transformation.207

Treatment of genital skin LS reduces symptoms, such as skin itching and bleeding, and may serve to prevent meatus stenosis and progression to extensive stricture of the penile urethra. Current therapies rely heavily on topical moderate- to high-potency steroid creams, such as clobetasol or mometasone creams. Calcineurin inhibitors such as tacrolimus have been shown to cause regression in external skin manifestations.207

Reconstruction of anterior urethral strictures associated with LS should proceed according to principles of anterior urethroplasty, with the caveat that the use of genital skin flaps and grafts should be avoided due to very high long-term failure rates.143, 219-221

POST-OPERATIVE FOLLOW-UP

33. Clinicians should monitor urethral stricture patients to identify symptomatic recurrence following dilation, direct visual internal urethrotomy, or urethroplasty. (Expert Opinion)

Urethral stricture recurrence following endoscopic treatment or urethroplasty can occur at any time in the postoperative period, and, because of this, a specific regimen for postoperative follow-up cannot be reliably determined. The surgeon may consider more frequent follow-up intervals in men at an increased risk for stricture recurrence including those with prior failed treatment (multiple endoscopic procedures or previous urethroplasty), tobacco use, diabetes, increasing stricture length, strictures related to LS, hypospadias, or a repair involving a flap or graft.134, 154, 162, 163, 221-229

Surgeons can use a number of diagnostic tests to detect or screen for stricture recurrence following open or endoscopic treatment (see Statements 1 and 2); however, the use of, or combination of, urethrocystoscopy, urethral ultrasound, or RUG appears to provide the most definitive confirmation of stricture recurrence.82, 84, 85, 87-90, 230, 231 No specific urethral lumen diameter, determined endoscopically or radiographically, has been shown to be diagnostic of a stricture recurrence.

Although stents are not currently recommended for the treatment of urethral stricture. Patients treated with a urethral stent after dilation or internal urethrotomy should be monitored for recurrent stricture and complications. Recurrent strictures have been reported in new urethral regions outside of the stent placement as well as within the stent treated region.232-234 Patients with completely obstructed stents may require open urethroplasty and removal of the stent.233 Other stent complications include stent-induced hematuria, urethral pain, urinary incontinence, and chronic UTI.126, 232-236 Complications can occur at any time point after stent placement, so long-term monitoring with cystoscopy or urethral imaging is advised. Stents do not need to be prophylactically removed and should be followed conservatively unless associated with significant urethral or voiding symptoms.

Future Directions

Much of the literature on the topic urethral strictures consists of single surgeon or single institution case series with inconsistent definitions of stricture length, location, and etiology; success of treatment; and follow up. These inconsistencies make comparisons between studies difficult, while also providing ample opportunities for future research. To improve the quality of research, the Panel recommends the following:

- Standardize research terms to allow comparison between centers; specifically, the International Consultation on Urological Diseases nomenclature should be used. For example, the term "urethral stricture" should be applied to a narrowing of the anterior urethra that restrict the flow of urine.
Utilization of an urethral stricture classification system that organizes the disease process, allows for improved patient counseling on expected outcomes, and better facilitates comparison of similar strictures across research studies. Future urethroplasty research should include classification systems to better evaluate and compare uniform strictures.

In studies of the treatment of urethral strictures, multiple criteria for success should be reported. When data is available, studies should report success based on several criteria: PRMs, symptoms, uroflowmetry, radiography, cystoscopy, and need for subsequent procedures. This would facilitate comparison between multiple studies. A consensus primary outcome measure should be considered for future RCT and registry studies.

The duration of follow-up based on time of last clinic visit, telephone contact, or absence of known treatment for recurrence should be reported in all studies of urethral stricture treatment. Time-to-event analysis (Kaplan-Meier curves) should be reported.

Multi-institutional collaboration should be formed to evaluate management of uncommon diagnoses such as PFUI, hypospadias, panurethral strictures, and LS.

Urethral stricture remains a subject of active investigation. The Panel suggests the following issues in future investigations:

- Basic science and epidemiological research into the etiology of urethral strictures.
- Continued evaluation of robotic techniques to treat posterior urethral strictures and those extending into the proximal bulbar urethra.
- Prevention of catheter associated urethral injury and traumatic strictures through educational efforts on proper technique of catheter insertion and management after insertion.
- Studies on the effectiveness of early diagnosis and treatment of LS toward prevention of disease progression and urethral stricture formation.
- Basic science and animal studies using novel graft materials for urethral reconstruction (i.e., stem cells, tissue-engineered scaffolds).
- Long-term follow-up for adults in patients who have been treated as children, such as urethral stricture in adults after hypospadias repair.
- Further evaluation of alternative sources of autologous graft material.

- The efficacy of injection or balloon-coated anti-proliferative or other pharmacological agents at time of endoscopic treatment for penile urethral stricture, previous failed urethroplasty, posterior urethral stenosis, and bladder neck contracture.
- The relationship between of urethroplasty and ED.
- Role of urethral transection in urethroplasty regarding morbidity and outcomes.
- Dissemination and implementation of optimal perioperative antibiotic strategies for urethrotomy and urethroplasty.
- Determination of the ideal tissue for substitution urethroplasty.
- The optimal tissue and urethroplasty technique for urethral stricture following phalloplasty.

Abbreviations

AUA American Urological Association
AUSAI American Urological Association Symptom Index
CIC Clean intermittent catheterization
DVIU Direct visual internal urethrotomy
ED Erectile dysfunction
IIEF International index of erectile function
LS Lichen sclerosus
LUTS Lower urinary tract symptoms
NGB Neurogenic bladder
PFUD Pelvic fracture urethral defects
PFUI Pelvic fracture urethral injury
PGC Practice Guidelines Committee
PRM Patient reported measures
PVR Post-void residual
QoL Quality of life
RCT Randomized controlled trial
RUG Retrograde urethrography
SP Suprapubic
UTI Urinary tract infection
VCUG Voiding cystourethrography
VUAS Vesicourethral anastomotic stenosis
URETHRAL STRICTURE DISEASE PANEL, CONSULTANTS, AND STAFF

Panel 2016
Hunter Wessells, MD, Co-Chair
University of Washington
Seattle, WA

Richard A. Santucci, MD, Co-Chair
The Detroit Medical Center
Detroit, MI

Kenneth W. Angermeier, MD
Cleveland Clinic
Cleveland, OH

Sean P. Elliott, MD
University of Minnesota
Minneapolis, MN

Christopher M. Gonzales, MD
Northwestern Medical Faculty Foundation
Chicago, IL

Ron T. Kodama, MD
Sunnybrook Heath Sciences Centre
Toronto, ON Canada

Andrew C. Peterson, MD
Duke University Medical Center
Durham, NC

Keith Rourke, MD
University of Alberta
Edmonton, AB Canada

John T. Stoffel, MD (PGC Representative)
University of Michigan Medical Center
Ann Arbor, MI

Alex Vanni, MD
Lahey Clinic Medical Center
Burlington, MA

Bryan Voelzke, MD
University of Washington
Seattle, WA

Lee Zhao, MD
NYU Medical Center
New York, NY

Consultants 2016
Jonathan R, Treadwell, PhD
ECRI

Staff 2016
Heddy Hubbard, PhD, MPH, RN, FAAN
Abid Khan, MHS, MPP
Erin Kirkby, MS
Shalini Selvarajah, MD
Nenellia K. Bronson, MA
Leila Rahimi, MHS
Brooke Bixler, MPH

Amendment Panel 2023
Hunter Wessells, MD, Chair
University of Washington
Seattle, WA

Alex Vanni, MD
Lahey Clinic Medical Center
Burlington, MA

Allen Morey, MD
UT Southwestern Medical Center
Dallas, Texas

Consultants 2023
Lesley Souter, PhD
Nomadic EBM Methodology

Staff 2023
Erin Kirkby, MS
Leila Rahimi, MPH
Brooke Bixler, MPH
Sennett K. Kim
Chelsi Matthews

CONFLICT OF INTEREST DISCLOSURES 2016

All panel members completed COI disclosures. Disclosures listed include both topic– and non-topic– related relationships.

Consultant/Advisor: Sean Elliott: American Medical Systems, GT Urological

Meeting Participant or Lecturer: Kenneth Angermeier: American Medical Systems; Sean Elliott: American Medical Systems; Ron Kodama: Journal of Urology/GURS; Andrew Peterson: American Medical
Systems, Inc.; Hunter Wessells: National Institutes of Health

Scientific Study or Trial: Ron Kodama: Journal of Urology/GURS; Andrew Peterson: American Medical Systems, Inc.; John Stoffel: Uroplasty; Hunter Wessells: National Institutes of Health

Leadership Position: Sean Elliott: Percuvision; Ron Kodama: Journal of Urology, GURS; Andrew Peterson: Society of Government Service Urologists Southeastern Section, AUA Board of Directors, GURS Board of Directors

Other: Christopher Gonzalez: American Medical Systems; Hunter Wessells: National Institutes of Health

CONFLICT OF INTEREST DISCLOSURES

2023

All panel members completed COI disclosures. Disclosures listed include both topic– and non-topic-related relationships.

Meeting Participant or Lecturer: Allen Morey: Boston Scientific, Coloplast

Scientific Study or Trial: Alex Vanni: Boston Scientific, Ellison Foundation Grant; Hunter Wessells: NIH

2016 PEER REVIEWERS

We are grateful to the persons listed below who contributed to the Guideline by providing comments during the peer review process. Their reviews do not necessarily imply endorsement of the Guideline.

Jennifer T. Anger, MD
Noel A. Armenakas, MD
Mark S. Austenfeld, MD
Gregory T. Bales, MD
Guido Barbagli, MD
John M. Barry, MD
William W. Bohnert, MD
Timothy C. Brand, MD
Rodney H. Breau, MD
Benjamin N. Breyer, MD
Joshua A. Broghammer, MD
Jill C. Buckley, MD
Frank N. Burks, MD
Steven Eric Canfield, MD
Justin Chee, MD
Muhammad S. Choudhury, MD
Peter E. Clark, MD
John D. Denstedt, MD
Daniel David Dugi III, MD
Margit M. Fisch, MD
Brian J. Flynn, MD
Reynaldo G. Gomez, MD
Uri Gur, MD
Ty T. Higuchi, MD
James R. Jezior, MD
Melissa R. Kaufman, MD
Louis R. Kavoussi, MD
Sanjay B. Kulkarni, MD
Deborah J. Lightner, MD
Bahaa Sami Malaeb, MD
Joshua J. Meeks, MD, PhD
Douglas F. Milam, MD
Manoj Monga, MD
Raul Caesar Ordonez, MD
Craig A. Peters, MD
Robert Pickard, MD
Kevin McVary, MD
Hassan Razvi, MD
Daniel I. Rosenstein, MD
Charles L. Secrest, MD
Eila Curlee Skinner, MD
Daniel Stein, MD
Chandru P. Sundaram, MD
Ryan P. Terlecki, MD
Jeremy Brian Tonkin, MD
Ramon Virasoro, MD
J. Stuart Wolf, Jr., MD
Hadley M. Wood, MD
Guo-bing Xiong, MD

2023 PEER REVIEWERS

We are grateful to the persons listed below who contributed to the Guideline by providing comments during the peer review process. Their reviews do not necessarily imply endorsement of the Guideline.

Kenneth W. Angermeier, MD
Erin Travis Bird, MD
Stephen A. Boorjian, MD, FACS
Sam Chang, MD
John D. Denstedt, MD, FRCSC
Sean P. Elliott, MD
David A. Ginsberg, MD
Christopher M. Gonzalez, MD
Ron Kodama MD FRCSC
Gary Evan Lemack, MD
Edward M. Messing, MD, FACS
Matthew Edward Nielsen, MD
Andrew C. Peterson
Phillip M. Pierorazio
Hassan Razvi, MD
Keith Rourke
DISCLAIMER

This document was written by the Urethral Stricture Guideline Panel of the American Urological Association Education and Research, Inc., which was created in 2015. The Practice Guidelines Committee (PGC) of the AUA selected the Panel Chair. Panel members were selected by the Chair. Membership of the panel included specialists with specific expertise on this disorder. The mission of the panel was to develop recommendations that are analysis-based or consensus-based, depending on panel processes and available data, for optimal clinical practices in the diagnosis and treatment of stress urinary incontinence.

Funding of the panel was provided by the AUA. Panel members received no remuneration for their work. Each member of the panel provides an ongoing conflict of interest disclosure to the AUA.

While these guidelines do not necessarily establish the standard of care, AUA seeks to recommend and to encourage compliance by practitioners with current best practices related to the condition being treated. As medical knowledge expands and technology advances, the guidelines will change. Today these evidence-based guidelines statements represent not absolute mandates but provisional proposals for treatment under the specific conditions described in each document. For all these reasons, the guidelines do not pre-empt physician judgment in individual cases.

Treating physicians must take into account variations in resources, and patient tolerances, needs, and preferences. Conformance with any clinical guideline does not guarantee a successful outcome. The guideline text may include information or recommendations about certain drug uses (‘off label’) that are not approved by the Food and Drug Administration (FDA), or about medications or substances not subject to the FDA approval process. AUA urges strict compliance with all government regulations and protocols for prescription and use of these substances. The physician is encouraged to carefully follow all available prescribing information about indications, contraindications, precautions and warnings. These guidelines and best practice statements are not intended to provide legal advice about use and misuse of these substances.

Although guidelines are intended to encourage best practices and potentially encompass available technologies with sufficient data as of close of the literature review, they are necessarily time-limited. Guidelines cannot include evaluation of all data on emerging technologies or management, including those that are FDA-approved, which may immediately come to represent accepted clinical practices.

For this reason, the AUA does not regard technologies or management which are too new to be addressed by this guideline as necessarily experimental or investigational.
References

2. Appendix b: Quality assessment methods for drug class reviews for the drug effectiveness review project. Oregon Health & Science University 2005;

106. Nilsen OJ, Holm HV, Ekerhult TO et al: To transect or not transect: Results from the scandinavian urethroplasty study, a multicentre randomised study of bulbar urethroplasty comparing excision and primary anastomosis versus buccal mucosal grafting. European Urology 2022; 07: 07.

177. Rourke K, McKinny S and St Martin B: Effect of wound closure on buccal mucosal graft harvest site morbidity: Results of a randomized prospective trial. Urology 2012; 79: 443.

